Physical Geology I GEOL 1040

Major competencies: Students will demonstrate proficiency on a broad range of geological topics. These proficiencies include the following:

(1.) Identification of minerals and rocks; (2.) The application of concepts in plate tectonics to the rock cycle, volcanism, seismology, geomorphology, and continental movement; (3.) Integration of the general processes of weathering, mass movement, erosion, and deposition to explain the origin of specific landforms and landscapes; (4.) Integration of geologic features with the hydrologic cycle in order to characterize the geohydrology of an area; (5.) The ability to use geologic "tools" such as topographic maps, compasses, and remote sensing in interpreting geologic concepts and problems.

Teaching methods used: The teaching strategies employed in any given semester will likely vary from instructor to instructor. The strategies will include, but not be limited to, lecture, audio-visual/computer supplements, discussions, small-group problem solving, and field trips. Specific emphasis will be given to Power Point, "hands-on" analysis of rocks, and minerals, topographic maps, and practice with analyzing geologic data.

Administrative instructions: Attendance policies will vary by instructor. However, in all cases laboratory experience will be viewed as an integral part of the course. As such, lab attendance is mandatory and unapproved absences of more than 25% of lab meetings will result in a failing grade for the complete course. Regular class (lecture) attendance policy is left to the individual instructor.

Evaluation plan: The "target" grading percentages are shown below. However, these may vary according to the individual instructor.

Instrument	<u>% of Final Grade</u>
(1) Three written exams	65%
(2) Lab work with attendance	25%
(3) Two lab exams (or 2-4 quizzes)	10%
(4) Extra credit projects at discretion of instructor	0-25%
(5) Subjective evaluation of participation in class	0-25%
activities/discussions	

Major Course Competencies:

I.	Demonstrate plate tectonics as a unifying theme in physical geology.		
1.	<u>Related Skills</u> Describe the dynamics of plate processes, origins, and activities.	Evaluation Method(s) Exam, class discussion	<u>Teaching Strategy</u> Lecture, video, Power Point, transparencies
2.	Describe the characteristics of different types of plate boundaries and relate these types.	Exam, class discussion	Lecture, transparencies, small- group discussion
II.	Demonstrate an understanding of the principles by which minerals and rocks are classified and grouped.		
1.	<u>Related Skills</u> Identify, classify, and group various common minerals and rocks.	Evaluation Method (s) Lab exercises, lab exam	<u>Teaching Strategy</u> Lecture, lab experiments, field trips, microscopes
2.	Learn to associate mineral and rock properties with larger geologic events/ processes occurring at time of origin.	Lab exercises, lab exam, lecture exam	Lecture, lab exercises
3.	Describe the economic significance geologic and occurrence of important minerals and rocks.	Exam, lab exercises	Lecture, assigned reading
III	Demonstrate a knowledge of volcanic terminology, processes, and types.		
1.	<u>Related Skills</u> Identify the different types of volcanoes and related features.	Evaluation Method(s) Exam	<u>Teaching Strategy</u> Lecture, transparencies, Videos, Power Point
2.	Describe relationships between plate boundaries (tectonics) and volcanic events.	Exam, class discussion, lab exercises	Lecture, transparencies, Power Point
3.	Relate volcanic processes to formation of igneous rocks.	Exam, lab exercises	Lecture, lab experiments, small group discussion
4.	Define hazard zones for human populations.	Exam	Lecture, assigned reading

IV	. Relate structural geology to processes of formation and to land- scape development.		
1.	<u>Related Skills</u> Define the processes which create different types of folding and faulting.	Evaluation Method(s) Exam, class discussions	<u>Teaching Strategy</u> Lecture, assigned readings, field trip, transparencies, Power Point
2.	Demonstrate the relationship between specific types of folding and faulting to particular landforms.	Exam, class discussions	Lecture, assigned readings, field trip, transparencies, Power Point
v.	Demonstrate a knowledge of principles of seismology.		
1.	<u>Related Skills</u> Describe the relationship between seismic activity and plate boundaries, as well as exceptions to general principle.	Evaluation Method(s) Exam, class discussion	<u>Teaching Strategy</u> Lecture, videos, transparencies, assigned reading, Power Point
2.	Describe the various types of seismic waves and their significance to understanding both earthquakes and the earth.	Exam, class discussion	Lecture, assigned reading, Power Point
3.	Describe methods of measurement and prediction of earthquakes.	Exam	Lecture, assigned reading, videos, Power Point
4.	Define hazard zones for human populations.	Exam, class discussion	Lecture, assigned reading,
VI	. Relate the significance of the erosion cycle to geomorphology and the development of landscapes.		
1.	<u>Related Skills</u> Demonstrate the dynamic character of landscapes as influenced by the erosion cycle.	Evaluation Method(s) Exam, lab exercises	<u>Teaching Strategy</u> Lecture, lab exercises, transparencies, assigned Reading, Power Point
2.	Demonstrate the roles of weathering, mass movement, erosion (wind and water), and deposition in the evolution of landscapes.	Exam, class discussion	Lecture, field trip, transparencies, small group discussion, field trip
3.	Recognize major processes at work through specific landforms that are present.	Exam, class discussion	Lecture, field trips, assigned reading, transparencies, field trip

VII. Demonstrate a knowledge of glacial processes, principles, and landforms.

1. Rela	ated Skills te glacial episodes to natural natic fluctuation and processes.	Evaluation Method(s) Exam	<u>Teaching Strategy</u> Lecture, assigned reading, Power Point
	ce glacial episodes in an historical spective.	Exam	Lecture, assigned reading
glac	nonstrate relationships between cial processes and resultant cial landforms.	Exam, lab exercise	Lecture, lab exercises, assigned reading, topographic maps
	e glacial landforms as indication of tevents and processes.	Exam	Lecture, assigned reading
	escribe relationships between an processes and coastal landforms.		
1. Iden	ated Skills ntify various processes of coastal sion and deposition.	Evaluation Method(s) Exam, lab exercises	<u>Teaching Strategy</u> Lecture, lab exercises, assigned reading, topographic maps Power Point
	ine the significance of coastal lforms.	Exam	Lecture, assigned reading, Power Point
	alyze coastal environments as sites human habitation.	Exam, class discussion	Lecture, assigned readings, group discussions, videos
	nonstrate a knowledge of the ic principles of geohydrology.		
1. Def	ated Skills ine the concept of groundwater its behavior.	<u>Evaluation Method(s)</u> Exam, class discussion	<u>Teaching Strategy</u> Lecture, assigned reading, class discussion, Power Point
2. Des	cribe different types of aquifers.	Exam, class discussion	Lecture, assigned reading
-	blain principle and conditions affecting erground movement of water.	Exam, class discussion	Lecture, assigned reading
con	ccribe problems of groundwater tamination and cleanup, and esive use of groundwater.	Exam, class discussion	Lecture, assigned reading, class discussion

X. Demonstrate a knowledge of the Geologic Time Scale.

1.	<u>Related Skills</u> Describe the origin and significance of the Geologic Time Scale	<u>Evaluation Method(s)</u> Exam	Teaching Strategy Lecture, assigned reading
2.	Use the Geologic Time Scale as an aid to interpreting past geologic events.	Exam, class discussion	Lecture, assigned reading, class discussion, field trip
XI	Apply the "tools" of geology to analyses of geologic problems.		
1.	Related Skills Demonstrate the use of topographic maps.	Evaluation Method(s) Map exam, field exercise, lab exercises	Teaching Strategy Lecture, lab and field demonstrations and exercises
1. 2.	Demonstrate the use of topographic	Map exam, field	Lecture, lab and field